Interaction forces between a spherical nanoparticle and a flat surface.
نویسنده
چکیده
Due to the breakdown of Derjaguin approximation at the nanoscale level apart from the neglect of the atomic discrete structure, the underestimated number density of atoms, and surface effects, the continuum Hamaker model does not hold to describe interactions between a spherical nanoparticle and a flat surface. In this work, the interaction forces including van der Waals (vdW) attraction, Born repulsion and mechanical contact forces between a spherical nanoparticle and a flat substrate have been studied using molecular dynamic (MD) simulations. The MD simulated results are compared with the Hamaker approach and it is found that the force ratios for one nanosphere interacting with a flat surface are different from those for two interacting nanospheres, both qualitatively and quantitatively. Thus two separate formulas have been proposed to estimate the vdW attraction and Born repulsion forces between a nanosphere and a flat surface. Besides, it is revealed that the mechanical contact forces between a spherical nanoparticle and a flat surface still can be described by the continuum Hertz model.
منابع مشابه
Prediction of Surface in Machining by Flat and Spherical Surface Tools
In this paper, the profile of surfaces machined using end mills with flat and ball end tools in modeled. The real kinematics of the tool motion, the static deflection and the run out of the tool are included in the model. The cutting forces are calculated using a semi-empirical method based on orthogonal to oblique conversion of cutting coefficients. The thickness of the uncut chip is used as t...
متن کاملInteraction forces between colloidal particles in a solution of like-charged, adsorbing nanoparticles.
We have measured the force between a weakly charged micron-sized colloidal particle and flat substrate in the presence of highly charged nanoparticles of the same sign under solution conditions such that the nanoparticles physically adsorb to the colloidal particle and substrate. The objective was to investigate the net effect on the force profile between the microparticle and flat substrate ar...
متن کاملSubstrate directed self-assembly of anisotropic nanoparticles
We present a molecular dynamics study on the self-assembly of anisotropic nanoparticles—triangles and tetrahedrons on a flat surface. We observe ordered and disordered aggregates of nanoparticles depending on the particle–particle and surface–particle interactions. Anisotropic particles induce directionality in the assembly process. In particular, a cross over from the isotropic (spherical) ass...
متن کاملEffect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study
It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2014